6241B/6242B/ 6243B, LSOH Flat Wiring Cables with circuit protective conductor

Application and Description

These cables are suitable for fixed installation particularly for situations in which low emission smoke and domestic wiring cable for the surface wiring of sockets and lighting where fire, smoke emission and toxic fumes create a potential threat to life and equipment. Can be installed in fixed installations in dry or damp premises on walls, boards or trays, in channels or embedded in plaster. Suitable for laying in conduit or trunking where mechanical protection is required.

Cable Construction

- Fine bare copper strands

6242B

- Strands to IEC 60228 CI-1 or 2
- Thermosetting core insulation type EI5 or GP 8
- The core or cores shall be laid parallel with the uninsulated circuit protective conductor
- For twin cores, the protective conductor centrally placed between cores in same plane
- For 3 cores, the protective conductor centrally placed between black and grey cores in same plane - LSOH sheath, type LTS 2

Insulation Colour

Single core: brown or blue
Twin: brown and blue, or, for 2×1.0 and 2×1.5 cables, brown and brown
3 -core: brown, black (centre core) and grey

Any inquiries, please feel free to contact kitty@caledonian-cables.com or kitty@caledonian-cables.co.uk

6242B

6243B

Technical Characteristics

- Working voltage: 300/500v
- Test voltage: 2000 volts
- Flexing bending radius: $15 \times \varnothing$
- Static bending radius: $10 \times \varnothing$
- Flexing temperature: $+5^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
- Short circuit temperature: $+250^{\circ} \mathrm{C}$
- Flame retardant: IEC 60332.1
- Insulation resistance: $10 \mathrm{M} \Omega \times \mathrm{km}$
- Smoke density acc. to EN 50268 / IEC 61034
- Corrosiveness of combustion gases acc. to EN 50267-2-2, IEC 60754-2
- Flame test: flame-retardant acc. to EN 50265-2-1, IEC 60332.1

Cable Parameter

AWG	No. of Cores x Nominal Cross Sectional Area	Nominal thickness of insulation	Nominal thickness of sheath	Nominal overall dimensions		Circuit protective conductor AWG	Nominal Weight	Minimum insulation resistance at $90^{\circ} \mathrm{C}$
				Iower limit	upper limit			
	\# x mm ${ }^{\text {2 }}$	mm	mm	mm	mm		kg/km	M $\Omega \cdot \mathrm{km}$
6241B								
17	1×1.0	0.7	0.9	4.1×5.2	5.0×6.3	17	45	0.011
16	1×1.5	0.7	0.9	4.4×5.4	5.3×6.6	17	55	0.011

Caledonian

Any inquiries, please feel free to contact

AWG	No. of Cores x Nominal Cross Sectional Area	Nominal thickness of insulation	Nominal thickness of sheath	Nominal overall dimensions		Circuit protective conductor AWG	Nominal Weight	Minimum insulation resistance at $90^{\circ} \mathrm{C}$
				Iower limit	upper limit			
	\# x mm ${ }^{\text {2 }}$	mm	mm	mm	mm		kg/km	M $\Omega \cdot \mathrm{km}$
6242B								
17	2×1.0	0.7	0.9	4.1×7.6	5.0×9.1	17	68	0.011
17(7/26)	2×1.0	0.7	0.9	4.2×7.8	5.1×9.4	17	73	0.011
16	2×1.5	0.7	0.9	4.4×8.1	5.3×9.7	17	85	0.011
16(7/24)	2×1.5	0.7	0.9	4.5×8.3	5.4×10.0	17	90	0.011
14	2×2.5	0.7	1.0	4.9×9.3	6.0×11.2	16	120	0.0092
14(7/22)	2×2.5	0.7	1.0	5.0×9.5	6.1×11.4	16	125	0.0084
12(7/20)	2×4	0.7	1.0	5.5×10.4	6.7×12.6	16	175	0.0070
10(7/18)	2×6	0.7	1.1	6.2×12.0	7.5×14.6	14	240	0.0059
8(7/16)	2×10	0.7	1.2	7.3×14.5	8.8×17.6	12(7/20)	390	0.0047
6(7/14)	2×16	0.7	1.3	8.4×17.0	10.1×20.5	10(7/18)	560	0.0039
6243B								
17	3×1.0	0.7	0.9	4.1×10.0	5.1×12.1	17	91	0.011
16	3×1.5	0.7	0.9	4.4×10.7	5.3×12.9	17	115	0.011
14	3×2.5	0.7	1.0	4.9×12.0	6.0×14.6	17	170	0.0092
12(7/20)	3×4	0.7	1.0	5.5×14.0	6.7×16.9	16	196	0.0070
10(7/18)	3×6	0.7	1.1	6.2×16.2	7.5×19.5	14	291	0.0059
8(7/16)	3×10	0.7	1.2	7.3×19.5	8.8×23.6	12(7/20)	440	0.0047
6(7/14)	3×16	0.7	1.3	8.4×22.8	10.1×27.6	10(7/18)	670	0.0039

